POST-WAR BRIDGES
What makes these bridges eligible for the National Register of Historic Places?

1. Important Program Initiatives
 - All-weather durable bridges
 - First generation 3- and 4-level interchanges
 - International bridges

2. Innovative features and design
 - Award-winning designs
 - Directly associated with research projects
 - Early use of high-tensile bolts, all-welded connections, neoprene pads, and standard plans

3. Work of a master bridge engineer
 - Designed award-winning and landmark bridges
 - Contributed to the development of innovative design or construction techniques

4. Exceptional span or overall length
 - Difficult and complex to design
 - Used to carry traffic over larger features such as navigable waterways or multi-lane freeways

5. Early use of a bridge type
 - Examples include: Prestressed concrete bridges
 - Pan-formed girder bridges
 - FS slab bridges

6. Uncommon bridge type
 - Examples include:
 - Rigid frame bridges
 - Variable depth slab and tee beam bridges

7. Possess high artistic value
 - Characteristic examples include:
 - Slender columns
 - Clean lines

- US 281 at Rio Grande International Bridge (Laredo)
- Award-winning SH 35 at Lavaca Bay Bridge (Calhoun County)
- US 90A at Buffalo Bayou Bridges designed by Farland Bundy and Charles Matlock (Houston)
- US 79-US 190 over Brazos River (Robertson County)
- FM 535 at Piney Creek FS Slab Bridge (Bastrop County)
- Saunders Avenue at SH 31 Ridge Frame Bridge (Tyler)
- US 87 at Brady Creek (Brady)
POST-WAR BRIDGE GROUPS

Group I

- Exceptionally important bridges significant in more than one evaluation category
- Bridges requiring full review and mitigation under federal law

Example Bridges In Group I

Group II

- Important bridges significant in comparison to other bridges of the same type
- Bridges proposed for programmatic mitigation efforts developed in collaboration with others

Example Bridges In Group II

Group III

- Representative bridges significant primarily for their technological innovations
- Bridges for which existing documentation suffices as mitigation

Example Bridges In Group III
POST-WAR BRIDGE MITIGATION OPTIONS

Rehabilitation
Fixes the bridge so it can stay open for vehicular traffic
Does not impact the bridge’s important features
May require weight restrictions limiting or prohibiting certain types of vehicles from using the bridge

Reuse
Repairs the bridge for pedestrian use only
Reuse can be at the current location or relocated to a park or other public space

Documentation
Photographs, measured drawings, and/or historical reports created in accordance with the National Park Service for the Historic American Engineering Record (HAER)
Suitable for bridges when rehabilitation or reuse is not an option

Public Engagement
Focused on connecting the public with the history of the bridge
May include website content, interpretive signage, and educational displays
HISTORIC BRIDGES IN TEXAS

Metal truss bridges
- Built between 1870 and 1920
- Bridge innovations included:
 - Standard designs
 - Pre-fabricated
 - Easy-to-assemble pin connectors
 - 1900: transition from pin connections to all-riveted connections

Concrete bridges
- Result of Good Roads Movement and establishment of the Texas Highway Department in 1917
- Development of standard bridge designs for steel I-beam and concrete bridges
- Urban areas often had concrete arch bridges with City Beautiful Movement ornamentation

Masonry bridges
- Constructed during the 1930s and 1940s
- Usually federally funded and overseen by federal Depression-era agencies such as the Works Progress Administration
- Bolstered local employment and provided new skills to workers
- Labor-intensive construction

Innovative bridges
- Constructed between 1945 and 1965
- Widespread use of standard bridge designs
- Texas was national leader in innovative bridge design
- Texas Highway Department engineers created new construction materials, bridge types, and fabrication techniques

WHAT HAPPENS NEXT
- Inventory and evaluation complete
- Next step: Develop management planning options

WHAT HAPPENS NEXT
- Proposed for re-evaluation of previous study
- Next step: Conduct re-evaluation after completion of post-war bridge study

WHAT HAPPENS NEXT
- Proposed for update of existing inventory
- Next step: Conduct field assessments of bridges

WHAT HAPPENS NEXT
- Currently seeking public input and feedback
- Next step: Compile information from open houses
WHAT HAPPENS NEXT FOR POST-WAR BRIDGES?

Public Open Houses
- Conduct public open houses
- Gather public input and feedback

Compile Information
- Compile feedback and input received from public open houses
- Use feedback to inform next steps and programmatic agreement

Implement Agreement
- Execute a programmatic agreement between Texas Department of Transportation, Texas Historical Commission, Historic Bridge Foundation, and Federal Highway Administration

Develop Materials
- Develop materials to be used for public engagement such as:
 - Website content
 - School curricula
 - Museum exhibits